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Many authors have studied the one-dimensional plane-wave motion of a 
medium which has a stress-strain dependence of a complicated type (non- 
linear or even irreversible). One may mention here the work of Donnell 
[ 1 I, Taylor [ 2 1 , von Karman and Duwez [ 8 1 , Rakhmatulln [ 4,5,6 1 , 
Shapiro [ 7 I, Barenblatt 18 I, White and Griffis [9,10 1, Galin [ 11 I, 
Liakhov and Pollakova [ 12.18 1, and others. 

Of great interest was the work of Rakhmatulln [ 4 I in which an un- 
loading wave was discovered and studied. Evidently. the work of Baren- 
blatt [8 1 was the first to establish a clear dependence of the qualita- 
tive features of the solution of the piston problem for a nonlinear 
elastic material on the differential properties of the stress-strain 
diagram. In particular , a solution with a slow impact wave was con- 
structed which, it developed subsequently, could be used to explain 
certain qualitative effects that have been observed in the propagation 
of explosive waves in soil [ 14-16 1 . Galin’s paper [ 11 1 gave a general- 
ization of the results of [8 I to the case when stresses depend not only 
on the strains but on the temperature as well. Most of the work in this 

directlon had In view an application of the results to nonlinear elastic 

materials and elastic-plastic metals. In these papers it was assumed 

that the relation between the axial stresses and strains was given in 

some rora or other. and then the mathematical problem arising from this 

formulation was solved. The question of what system of general three- 

dimensional equations of motion gave rise to the one-dimensional problem 

studied was not, however, investigated. 

we systematically study below the one-dimensional self-similar prob- 

lem of soil motion which is excited b;r the penetration into the soil, or 
withdrawal out of the soil, of a piston moving at a constant VelocltY. 
This study is carried out on the beris of the general system of equations 

of soil mechanics which is contained in [ 14.15 1. Further, as in [ 17 I, 
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the investigation is oarried out without explicitly specifying the func- 
tion which characterizes the material. Therefore, the results which are 
obtained are of a general nature. As a consequence of this analysis, the 

following qualitative results are established. 

1. The restriction on the form of the function F(p) which was formu- 
lated in El7 1 is necessary here also. though for another reason. It is 
necessary here for the sound velocity of rarefaction waves of plastic 
shear to be real. 

2. The discontinuous change in the sound velocity with a change in 
density during the transition from elastic to plastic shear strain, both 
in rarefaction and compression motion, leads to two possibilities. These 
depend on the differential properties of the chsracteristic of the 
medium. There is the possibility of a doubly-centered wave of compres- 
sion (or rarefaction) which divides the region of progressive motion, or 
the possibility of two shock waves of compression (or rarefaction) pro- 
pagating one after the other at different velocities.* 

3, Under specific differential properties of the characteristic of 
the medium, shock waves of rarefaction may exist. 

4. The experimentally established [ 16 1 form of the function P(p); = 

lkp + b)’ turns out to be an optimum in a certain sense. It allows one 
to reduce the question of the existence of various shock or continuous 
simple waves to the investigation of the differential properties of a 
single function p = f@, p*). 

5. The presence of a break in the p = p(p) diagram in the transition 
from the p+ = const to the branch p = p, also leads to the possible 
existence of additional shock or continuous compression waves. 

1. In the case of one-dimensional plane-wave motion, the system of 
equations describing the motion of the medium has the form [17 1 

* we note that in the solutions given in [ 4 3, [ 7 I, [ 12 1 and others, 
the emergence of centered waves that divide the region of progressive 
motion is tied in with the approximation of a smooth stress-strain 
curve by a broken one. That is, it is the consequence of an approxi- 
mate method of solution of the problem. Here, however, it is a pro- 
perty of an exact solution based on a definite physical mechanism. 
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P = f (PI P*) e (P* - P) e (P - PO) - f” (?, P*) 
(1.1) 

dp, _ dp 
dt -g++fh)e($) 

h. _ 2GW-P(p)dpldt - 
2F (P) 

e [Jz - F (p)l e I2GW - F’ (P) 21 

2GW= 2G (a +p$, J2 = S(p + a)” 

lhe same notation is used in these formulas as in Cl7 1. The lateral 
principal stress uYT = o1 is determined by the formula 

(TIZ -p- $ (P -I- 4 (1.2) 

If the motion is resisted by the compression of an element of the 

medium, then it is natural to assume that o < u,, that is, by virtue of 

(1.2) 

If 

under 

that CT + p < 0. For extension of an element o + p > 0. 

shear proceeds elastically, then h = 0 and J, < F(p). Therefore, 

elastic shear we must have the inequalities 

-+=<P +a< 9f3F (p) (1.3) 

The transition to plastic shear under compression corresponds to the 

left inequality in (1.3) turning into an equality. Under extension the 

right inequality becomes an equality. 

With the help of the second of relations (1.11, the third may be trans- 

formed into the form 

;iz d(O.+P++\$-y+w+P)=O (i-4) 

lhe piston problem is self-similar because the system of equations for 

the medium contains no constants whose dimensions differ from those of 

stress and density. If the velocity of the piston is denoted by V then 
we have 

u = ks (0, P = kp (4, P = PlR (01 P* = PlR* (E) 

u = vu (E), G = cog (R), f” (P, P*) = k jr“ (R, R,) 

F (p) = k2F (P), J2 = k212, 5 = xclvt (1.5) 
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where pl, C, and k are values of density, shear modulus and pressure that 

characterize the medium (we assume that the modulus G depends on density). 

Then the system (l.l), (1.4) goes over to a system of ordinary differ- 
ential equations for self-similar motion (primes denote differentiation 
with respect to [) 

R (U - c) U’ - -J&s = 0, (U-QR’ +RU’ = 0 

(U - qs +P +$zyJyy +A*@ +P) =o 

R,' = R’e (R -R,)e[f(CI-S)R’] (1-G) 

h, = ht, P = f*‘= (R, R,), Ia = $(S + P)” 

va 
ma = pl k, +? 

Relations (1.2) and (1.3) retain their form in the new notation. 

If the shear occurs elastically, then X = 0, and the third of equa- 
tions (1.6) goes over to 

Under plastic shear X > 0 and 

S+P=-&Jmqy 

(1.7) 

(1.8) 

the upper sign corresponding to rarefaction and the lower to compression. 

In this self-similar problem all of the quantities, including R,, are 
functions of &J. In part of the region the specified solution R, can 
change with a change in 4, and then R, = R; in the remaining parts of 
this region R, will be constant. ‘lherefore in each of these parts P will 
be a single-valued function only of R. Hence, in the integration of the 
system (1.6), (1.7), (1.8) it may be assumed that P= P(R). ‘he depend- 
ence of P on R, and the change in R, become essential only for a transi- 
tion through a value of 5‘ for which the solution either undergoes a dis- 
continuity or for which there occurs a transition from the region where 
R, = const to a region where R, =-R, 

Since U - gf 0 (otherwise the second of equations (1.6) would be 
violated), we have from (1.7) 

S= -p_ ;+TfT + const (1.9) 
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In view of the relative dependence of P on R indicated above, it is 
clear that both in elastic and plastic shear S is a single-valued func- 

tion of R ((1.8) and (1.9)). This greatly simplifies the problem, re- 

ducing it to the integration of a system of two ordinary equations 

(U - EJ R’ +RU’ = 0, (17 - 6) RU’ + +R’ = 0 (1.10) 

where 

aa =ea=.__=p'(R)+~~ __ dSe e(K) 
e UR 3 R 

(i.11) 

for elastic shear and 

(1.12) 

for plastic shear. 

lhe quantity a/m plays the role of a sound velocity. From Formulas 

(1.11) and (1.12) it is seen that for a continuous transition from the 

region of elastic shear to the region of plastic shear the sound velo- 

city, generally speaking, changes by a jump. We shall see below that 

interesting peculiarities of the studied motion of the medium are asso- 

ciated with this circumstance. 

Further, from (1.12) it is clear that for 

F’ (P) > vm (1.13) 

the sound velocity in plastic shear under conditions of rarefaction 

(upper sign) becomes an imaginary quantity. It is curious to note that 

this same condition led, in the quasistatic problem with central sym- 

metry that was investigated in 117 1, to the emergence of limiting lines; 

therefore, the requirement imposed there that the function F(P) should 

not have the property (1.13) is also necessary here in the investigation 

of the dynamic problem. We remark again that the function F(p) which is 

formulated according to the results of experiments on sandy soil [16 1 
satisfies this requirement. 

As is well known, Equations (1.10) have the general solution 

u = const, R = const (1.14) 

determining progressive flow, and the particular solution of a simple 

centered wave 

U=4&ha, (1.15) 
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'l'he solution of the piston problem, as well as that of the general 

problem of the decomposition of an arbitrary shock in soil, can be con- 

structed from the solutions (1.14) and (1.151, taking into account the 

fact that the dependence of a on R is different in the elastic and 
plastic (in shear) regions ((l.ll), (1.12)). For solutions of this type 

it is necessary to study the relationships on the surface of the shock, 

which, generally speaking, will certainly arise in the problems studied. 

The shock surfaces are investigated to some extent below. Now we examine 

some properties of the solution (1.15). 

By the selection of the positive direction of the x-axis, one can 

arrange that the solution (1.15) will always have the form 

Here R,, U, are arbitrary constants. 'Ihis solution describes a wave 
travelling in the positive direction of the x-axis. Let compression 

occur in this wave, i.e. 

dR / dt = R’ (E) (U - 5) / t = - aR’ (EJ / mt > 0 

This is possible if R’(t) < 0, or l/R'([) < 0. Using (1.16) we obtain 

1 dE 
R’ (t) = ;i- 

‘Ikis mans that a simple wave will be a compression wave only if 

d(uR)/& < 0. For d(aR)/& > 0 it will be a rarefaction wave. 

We examine first the case of elastic shear. Using Formula (1.11) we 

have 

d (a$) I d (0,RY 
dH= ~~ = 2& {R2Pm (R) + ZRP’ (R) + 2a,H dli 

++ k!(R) +Rg’(R)l}y&Ae(R) (1.17) 

If A,(R) > 0, then the simple wave will be a rarefaction wave. It is 

natural to assume that the shear modulus does not decrease with an in- 

crease in density, i.e. g’(R) 2 0. In order for a simple compression 

wave to be possible, it is necessary for a region of change of R to 
exist, in which P”(R) < 0. In the opposite case a simple wave will be a 

rarefaction wave. Thus, for example, if volumetric deformation takes 

place according to a linearly elastic scheme, then 

P (R) = C (1 -Ro/R), C = const, A, = +z(g +Rg’)>O 
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i.e. a simple wave will be a rarefaction wave. 

If one passes from R to 8 = 1 -R,/R,, then the expression for Ae has 
the form 

A, (0) = (1 - 0)' ptm8 (0) + in [*lo’} (1.18) 

From this formula it is seen that (under the condition g/(8) > 0) the 
necessary condition fox the existence of a simple compression wave is 
PO/ < 0. We remark here that this condition is by no means sufficient 
for the existence of such waves. A sufficient condition is the inequal- 
ity A@ < 0. 

When shear occurs plastically we have, using Formula (1.12) 

--=2apHaH- 
dki 

(2RP’ + R2P") x 

1 (1.19) 

In the variable 8 we have 

-4, (0) = (1 - Q2 Pd 1 T --+) F (&‘)a 2FIi ---if)” I i 1 (1.20) 
If compression occurs in plastic shear, then it is necessary to take 

the lower sign. Therefore, a simple compression wave with plastic shear 
can exist only under the condition 

PC@” (1 + --+) -j- (Pe8)22F2g ;;.y < 0 
* 

(1.21) 

while a simple rarefaction wave with plastic shear can exist only under 
the condition 

(1.22) 

We note simple cases where waves of one type or another are known to 
exist or not exist. If 2FF" - (F’J2 > 0, then for Pee..> 0 compression 
waves do not exist, while for PO;< < 0 rarefaction waves do not exist. 
If 2FF'":- (F'J2 (0, then for Pee”.. > 0 there exists a rarefaction wave, 
while for P,,“-- > 0 there exists a rarefaction wave, while for Psi<.< 0 
a compression wave exists. In the intermediate case 2Fr- ‘(F’j2 = 0 
a more accurate statement can be made: for PO@“-> 0 a rarefaction wave 
exists and a compression wave does not exist, while for Pee?.< 0 the 
reverse is the case. It is interesting to note that it is just this 
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intermediate case that occurs in sandy soil for which the function F(p), 
constructed experimentally [ 16 I , has the form 

F (1-4 = (0 + 4’ (1.23) 

Let us determine the cases in which a simple wave can in fact arise 
in plastic shear. For this it is necessary to calculate X by Formula 
(1.1). w the use of these formulas, and also Formulas (1.5), (1.6), 
(1.8), (1.16), (l.ll), (1.12), we obtain 

3=p R’ (E) 
=&- =E===z (a,” 

2 v3F (P) 
- uP2) e 1 *R’ (6) (see - ap2)1 (1.24) 

In a compression wave R’(c) < 0 and it is necessary to take the lower 
sign in Formula (1.24); in a rarefaction wave R’(t) > 0 and one should 
take the lower sign in Formula (1.24). In both cases the motion is 
admissible, i.e. X > 0, only for 

(1.25) 

or, what is the same thing, for 

4go yn R +7(P) F’oP’(R)>O (1.26) 

In rarefaction (upper sign) this inequality is fulfilled everywhere, 
while in compression (lower sign) it can be fulfilled or not, depending 
on the properties of the functions g(R), F(P), and P(R). For large values 
of P this inequality will certainly be violated because F’-< \/(3F) (see 
above), g(R) is naturally assumed to be a bounded quantity, and P’(R) 
may attain a significant magnitude when R approaches the limiting value 
R_, with increasing P. Condition (1.26) and conclusions drawn from it co- 
incide with similar conclusions for the quasistatic problem (see [17 I, 
Formula (2.4)). Hence, we see, exactly as in the quasistatic case in- 
vestigated in El7 I, that here in the dynamic case in continuous motion 
the following occurs. Under conditions of rarefaction, plastic shear, 
once excited, will be retained everywhere under an arbitrary degree of 
further rarefaction. Under conditions of compression it may disappear and 
pass over to elastic shear if the further compression is significant. It 
is of course possible (i.e. such a choice of functions g(R), F(P) and 
P(R) is possible) that the shear in the compression wave cannot be 



1308 S.S. Crigorian and F.L. Chetnous’ko 

plastic under any compression, i.e. inequality (1.26) with lower sign is 
not satisfied for any value of R. 

It is convenient to display these results graphically. In Fig, 1 in 
terms of a plane in the variables y = -(S + P), P the lines OA, OA’ 
show the plastic limit (line (1.8)), and the lines DEB, D’E’CL,DyE’T 
are three out of a set of lines that are determined by the elastic con- 
dition (1.9). Each of these lines is determined by the initial point PoO, 
R,,, which consequently also specifies the dependence of P on R, and by 
the initial value S= S,,. The point C is 
a point at which condition (1.26) with 
lower sign is satisfied. The process of 
deformation of an element of the medium 
is described in the y, P-plane in the 
following way. If the initial state is 
described by the point E (i.e. SOo=-P,,O) 
and rarefaction occurs, then the point 
describing the state of the element moves 
along the curve ED (elastic shear) and 
further along DO (plastic shear). The 
process is complete when the state of 
‘disintegration is reached (point K) for 
which R = R,, P = P,, which also means 

S = S,. After this the point jumps to the Fig. 1. 
origin of coordinates: P = 0, S = 0, 
which corresponds to stress relief duringathe disintegration. If a com- 
pressive deformation develops from the initial state E, then the point 
moves along the curve EB, then along BA until the point C is reached, 
after which it moves along CL. lhe motion along EB corresponds to an 
elastic shear deformation, along BCto plastic shear deformation, and 
along CL to an elastic deformation again. It can be assumed, generally 
speaking, that upon motion of the point along CL it will again emerge 
on the curve OA, i.e. plastic shear deformation will begin anew, after 
which the point will again evolve to a point of the type C, i.e. elastic 
shear deformation will start again, etc. However, for a significant 
advance to the right, as has been already mentioned above, the deforma- 
tion stops and remains elastic ‘for all further times. Ihe coordinates of 
the points D, B, C and K are easily determined if the dependence P = P(R) 
is chosen and the functions F(P) and g(R) are given. 

2. We turn now to the study of the shock surface in the motions ex- 
amined. ‘Ihe laws of conservation of mass and momentum lead to the follow- 
ing conditions on the surface of the shock wave: 

PlG - Ul) = P2 (D - %z) (2.f) 
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Ul + PI (D - 4) 4 = % + P2 P - u2) u2 

where D is the velocity of the shock wave, the subscript 1 pertains to 
particles to particles in front of the shock wave, and the subscript 2 
pertains to those behind the wave. In the self-similar motion being 
examined, the velocity of the shock wave is constant, i.e. the parameter 
5‘ = 6, is constant on the shock wave. Therefore, using the dimensionless 
variables (1.5) we obtain from (2.1) 

6, = 
RzUz - RlUl 

Hz--B1 p s2 _ sI = - m2R1R2(~ 1 ?)a 

2 1 

Shock waves which are used to construct the solution of the 

(2.2) 

problem 
must satisfy necessary conditions of stability, included in the follow- 
ing. The velocity of the wave with respect to the particles in front of 
the wave should not be smaller than small perturbations in these particle 
velocities; the velocity of the wave with respect to the particles in 
back of the wave should not be more than the velocity of small perturba- 
tions there (18 I. In the problem being examined the quantity do/dp 

plays the role of a square in the velocity of small perturbations. In the 
general case jumps that arbitrarily connect two points of possible soil 
states in the p, p-plane are conceivable. We use the following hypothesis 
to restrict the possible shock waves. We shall assume that points in the 
p, p-plane corresponding to two sides of the shock wave either lie on 
the curve with the same value of the parameter p*, or, if this is not 
the case, then at any rate one of the points must certainly be found on 
the curve p = p, = fO(p,, p*) (see Formula (1.1) as regards notation, 
and also 115 I). 

The second of these possibilities can be realized only in jumps of 
condensation. 

These assumptions are justified by the following considerations. In 
the original notions for a model characterizing volumetric deformation 

115 I) it was assumed that the point in the p, p-plane describing the 
state of the particle can, for p < p*, only move along the curve p* = 
const in the process of volumetric deformation, while for p = p* it can 
only move along p = p,. This means that it is possible to go from the 
point pl, p1 < p*l to the point p2, p2 < P,~ > pel only by first moving 
upward along the line p* = p*l and then along the line p = p* until 
p* = p*2 is reached and then downward along the line p* = pe2. ‘Ihe last 
stage represents an unloading. 

In examining the motion within a thin layer which is changed by the 
shock surface (i.e. in examining the structure of the shock wave), we 
shall assume that the process of volumetric deformation occurs only along 
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the described lines. In order for this to be possible it is necessary to 
assume that there must exist some viscous type forces that have not been 
taken into account in the equations of the model. The presence of these 
forces is necessary so that the line in the p, l/p plane connecting the 
points corresponding to the two sides of the shock wave can deviate from 
the straight-line segment joining these points. However, the deformation 
process taking place within the thin layer (shock wave) according to 
such a model will contain a stage of rarefaction if the examined jump as 
a whole is a jump in condensation. On the other hand, if the jump as a 
whole is a jump of expansion, then an ex~ination of the jump leads to 
the conclusion that the jump can only connect points on a line with the 
same value of p*. Hence, our hypothesis is in essence equivalent (within 
the framework of the model being examined) to the assumption that within 
the jumps of condensation the condensation of the particles occurs mono- 

tonically. 

We turn now to the question of the velocity of the small perturbations 
which must be used in the study of the stability of shock waves. In the 
general case of non-self-similar perturbations, the velocity of propaga- 
tion of the perturbations is also determined by Formulas (1.10 and (1.X0, 
with the proviso, however, that P’(R) should be changed to 

where the letters next to the parenthesis indicate which argument is 
held fixed in the differentiation. If R < R,, then the velocities of 
small perturbations in loading and unloading coincide; however if R = R,, 

these ‘velocities will be different. If the studied wave is a jump of ex- 
pansion, then, as has been established by the hypothesis assumed above, 
the two points of the P&-plane corresponding to the two sides of the 
jump occur on one and the same line R, = const. In this case, clearly 
R,< R, at a point behind the jump, while at a point ahead of the jump 
either R, = R, or likewise R, < R,. If R, = R,, then at a point in front 
of the jump the velocities of small compression and rarefaction will 
differ. However, in accordance with the requirements for the stability 
of a jump, the jump velocity must exceed both these velocities. There- 
fore, one may finally assert that for the stability of rarefaction jumps 
it is necessary that the jump velocity be smaller than the velocity of 
small perturbations of the particles in front of the jump and not larger 
than such velocities in back of the jump, all this under the condition 
that the velocities of small perturbations be calculated for R, = const. 

In the examination of jumps of condensation, four cases are possible 
when the densities at points ahead of and behind the jump satisfy: (1) 
the conditions R, < R, < Rel; (2) the conditions R, < R, = Rel; (3) the 
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conditions R, < R*l < R, = R,,; and (4) the conditions R,=R,,<.RR,=Re2. 

In case (1) it is obvious that the conditions of stability of a jump 
are formulated in exactly the same way as for the above case of a jump 
of rarefaction. In case (2) there are again two small perturbation velo- 
cities for the particles behind the jump. The velocity of the jump must 
certainly be no larger than the small perturbation velocity there, calcu- 
lated under the condition R, = const; however it may exceed the small 
perturbation velocity determined by R = R,. 

This assumption is justified by the following considerations. If in 
the neighborhood of the point of intersection of the lines R, = const 
and R = R,, as small a piece as desired of the curve R, is changed (with- 
out a break) so that it smoothly passes over to the curve R = R,, then 
for stable jumps the condition R, < R*, will certainly be fulfilled, R, 
differing from R,, as little as desired. Thereby case (2) is reduced to 
case (1). Passing now to the limit (setting the length of the smoothed 
section of the curve R, = const to zero), we obtain case (2), and the 
conditions of stability of the shock wave remain identical to the condi- 
tions for case (1). In case (3), for a particle in back of the wave, the 
small perturbation velocities have two values. The condition of stability 
requires that the wave velocity does not exceed both values, and since 
the velocity of loading perturbations (i.e. calculated under the condi- 
tion R = R,) is the smaller of the two values, it is necessary for sta- 
bility that just this velocity be not exceeded by the wave velocity. ‘lhe 
condition at a particle in front of the jump is the same as that in cases 
(1) and (2). Finally, in case (4), the stability condition at a particle 
in back of the jump coincides with the stability condition for case (3), 
while for a particle in front of the jump the situation is analogous to 
case (2). Here we likewise reduce case (4) to case (3) by smoothing the 
transition from the curve R, = const to the curve R = R., and as a result 
of a limiting transition we establish that for stability it is sufficient 
for the wave velocity with respect to a particle in front of the wave to 
be not smaller than the small perturbation velocities there, determined 
under the condition R = R,. 

It is easy to unify all of these cases into the following simple rule. 
If a shock wave of compression (rarefaction) produces a condensation 
(rarefaction) of the medium from the density R, to the density R,, then 
for the shock wave to be stable its velocity relative to the particles 
should not be smaller than the small perturbation velocities of particles 
in front of the wave and not larger than the small perturbation velo- 
cities of particles behind the wave, the perturbation velocities being 
calculated according to a dependence of P on R that connects the points 
P,, R1 and Pz, R, in a unique possible way. This rule greatly simplifies 
the investigation of shock waves because it allows one to bypass the 
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dependence of P on R or R, and in every case deals with a single rela- 

tion P= P(R) connecting the points describing the state of the particles 

in front of and behind the wave. 

The formulated rule only gives us stability conditions for the shock 

wave. For this or that wave satisfying this rule to actually exist-, it 

is necessary, generally speaking, to satisfy additional sufficiency con- 

ditions. 

For certain cases we next determine conditions which allow one to 

establish the known stability or instability of waves. Let a compression 

from R, to R, occur in a shock wave. The stability conditions read 

(2.41 

(2.5) 

where, by virtue of what has been said above, a(R) may be determined by 

Formulas (l.ll), (1.12). If d(~R)~/c& >, 0 in the interval R, ,( R 6 R,, 
then as a result of the second of Formulas (2.2) and Formulas (l.ll), 

(1.12) we have 

m2Rl&2 cua --U# 
Kg- R1 = Sl - Sa = . a2 (R) dR 

1 
RI 

= i’ (aR)2 $ > a2 (RI) R12 5’ $ = R* RiW (RI) 

Rl RI 

Hence it follows that condition (2.4) is satisfied. It can be analo- 

gously established that condition (2.5) is satisfied as well. However if 

~(czR)~/cIR 60 then in an exactly analogous way it can be shown that the 

stability conditions are not satisfied, i.e. that the compressive wave 

is unstable in this case. In rarefaction, i.e. for R, < R, we may analo- 
gously establish that for d(c~R)~/dR 6 0 in the interval R, < R < R, a 

shock wave of expansion is stable, while for d(~R)~/cfR > 0 (R2 6 R s R,) 
it is unstable. Comparing the results obtained here with the results of 

Section 1, we see that if d(aR)/dR >,O, then the existence of continuous 

rarefaction waves and stable compressive shock wave is possible. On the 

other hand if d(aJt)/dR 4 0, the existence of continuous compressive waves 

and stable rarefaction shock waves is possible. 

Ihe case of the quantity d(ar)/dR changing sign in the region of R 
being studied is complicated and requires a more detailed investigation. 
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3. We turn now to the construction of the solution of the piston prob- 
lem. We examine first the case where the piston, moving to the left out 
of the medium, produces a rarefaction. Here it is required to construct 
a solution of Equations (1.10) that satisfy the following conditions: for 
( = - 1,II = - 1 and for 5 + m, U = 0, R = R,,. We shall assume that 
d(a,R)/dR 2 0 and d(apR)/dR > 0. Under these conditions, as has been 
established above, there can exist continuous rarefaction waves and stable 
jumps of condensation, but there cannot exist stable jumps of rarefaction. 
For simplicity we assume that in the initial state S,, = - Pa,. Let the 
velocity of the piston be extremely small. Then the parameter m is small 
and the whole motion will be small. The motion cannot be contiguous to a 
region of the initial rest state of the compressive shock wave because 
in this case a progressive flow or a rarefaction wave could follow in 
back of the shock. However, neither of these is possible because in view 
of the stability of the shock wave its velocity along the particles in 
back of it is smaller than the sound velocity there, and therefore in the 
case of a progressive flow in back of the jump the second boundary of the 
region of the progressive flow, moving at the sound velocity, and hence 
faster than the jump, would not be able to remain away from the jump. In 
the case of a rarefaction wave in back of the jump, the same reason would 
cause the wave to overtake the jump and weaken it. ‘Ihis would be contrary 
to the constancy of the magnitude of the jump as given by the self- 
similar solution of the problem. Hence, the motion in the neighborhood of 
the region of the initial rest state will certainly be a rarefaction wave, 
and since S,, = - P,, in the initial state, the shear in this wave will 
occur elastically. If the velocity of the piston is sufficiently small, 
then the shear will be everywhere elastic in the region of motion, and 
the solution will consist of the indicated expansion wave and a region 
of progressive motion bordering on the wave of rarefaction and extending 
to the piston. Compressive waves in interior portions of the region of 
motion also cannot exist (for the same reasons as above). The solution 
has the form 

U= 4 - t+(R) (El GE d Eo) (3.1) 

u=-I, R rz K,i, (---1dE<El) 

The constant parameters (a, 5, and Rmin are determined from 
ditions of continuity of the solution on the boundaries of the 
wave and the regions of the progressive flow and the condition 
piston 

the con- 
expansion 
on the 



1314 S.S. Crigorian and F.L. Chernour’ko 

rs, 
co = ; a, f&o) 1 s a, m 

TdRZrn, El=; - 1 + +A? t&lifJ (3.2) 

From these formulas it is seen that for small velocities of the piston, 
i.e. for small ~1, Rain will be close to R,, and the motion will be small 
and concentrated in a thin layer between the near surfaces 6 = co and 
c = tl. With an increase in the velocity of the piston the rarefaction 
will grow; Rmin will move away from Boo, and the width of the rarefaction 
wave will increase. Subsequently, either the elastic limit in shear will 
be reached and a solution with plastic shear will have to be found, or a 
state will be reached under elastic shear where the stress approaches 
zero in the region of the progressive wave abutting the piston. If the 
particles of the medium that are imnediately contiguous to the piston are 
only in free contact with it, then a further increase in the velocity of 
the piston will not correspond to motion of the medium. 'Ihe piston will 
tear away from the medium and a vacuum will be formed between the piston 
and the surface of the soil. Likewise, if the particles directly next to 
the piston are rigidly attached to the piston (#glued on"), then an in- 
creased velocity of the piston will correspond to that of the medium as 
long as the pressure P in the region of the progressive flow does not 
attain the minimum possible value P, < 0, below which the medium will not 
sustain tensile stresses. For velocities of the piston exceeding this 
critical value, there will occur at time t = 0 a discontinuity in the 
medium at the cross-section directly adjacent to the piston, so that the 
motion will coinside with the motion which is excited by the velocity of 
the piston when S = 0 at the piston. 'Ibe feasibility of constructing a 
solution with a jump which changes the particles from a state of limiting 
tension P= P, < 0, R = R,, S = So > 0 to the disintegration state P = 0, 
S = 0 does not arise because, as is seen from the second of Formulas 
(2.2), condensation would occur on such a surface of discontinuity, which 
contradicts the assumption that disintegration also occurs behind the 
surface P = S = 0. 

The velocity of 
from the condition 

the piston for which S = 0 on the piston is determined 

R.-a, (R) 
m= 

\ l 

-7i-dR 
K* 

where the density R, is, by virtue of (1.9), determined from the condi- 
tion 

(3.4) 
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Likewise, in the case of the glued piston the velocity at which the 
piston attains the limiting tension is determined from the condition 

(3.5) 

where R, is the minimum density possible without disintegration [15 1. 
Clearly R, < R,. Of course, all of this will take place if the shear 
remains elastic for all time during a change of density from R,, to R, 
and R,, i.e. the point in the y, P-plane remains above the line OA’ 
(Fig. 1). However, if there exists a value of the density R, > R,, at 
the attainment of which the point emerges on the line OA’j then for 
larger rarefactions, i.e. for larger velocities of the piston, it is 
necessary to construct a solution which takes into account the formation 
of a region of plastic shear. We show at the outset that the transition 
into the plastic shear region cannot occur with a jump. This jump cannot 
be a jump of condensation because it would leave the particle in the 
elastic region, and for this case it has been shown above that a jump of 
condensation cannot exist in the solution. Hence, the jump, if it exists, 
must be a jump of rarefaction. It cannot be entirely in the elastic region 
or entirely in the plastic region because it would then be unstable. This 
means that it can transfer a particle from the elastic to the plastic 
region. Using (2.2) we have, taking into account that up < ae 

RD Rl 
,$RIRz (‘? - *da = & _ 81 = -- 

nl--2 s apa U-0 do + \ ae2 (R) dR c 

< 7 a82 (R) dR = \ (a,R)’ ‘$ < a,2 (RI) R12 q 
RI Rt 

Hence, we obtain the condition of the instability of a discontinuity 

l’hus, the transition from the region of elastic shear to the region 
of plastic shear occurs continuously. However, the rarefaction wave 
which certainly occurs in the plastic region cannot be adjacent to the 
rarefaction wave in the elastic region, since the velocity of sound 
undergoes a discontinuity in the transition from the elastic to the 
plastic region. This means that between these two waves of rarefaction 
there must exist a region of progressive motion. In conclusion, the 
solution has the form 
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(3.6) 
(Eo\<Ed+=) 

lJ=( -$z,(R) (E~,\<E dEd 

R 

a-1+; \ !Yq?dR, u=g- -$dR) (h<t<\<Dp) 
R min 

u=-1, R = Rmin 
(--fBE<El) 

‘Ihe value of the density R, is determined by the condition of exit to 
point D (Fig. l), while the constants c,, cbe, tDP, tl, UD, Rapin are de- 
termined from obvious continuity conditions, giving the formulas 

?“” a, (R) 
tJ,=-& \ 

l 

R dR, 

RD 

RD 
Roe up (R) 

qdR+ lTdR=rn 

R min RD 

co = $ ae VhJ, El = - 1 $- -& up (Rmin) (3.7) 

EDe = UD + 4 G (RD), EDp = UD + & aP tRfi) 

Here, with an increase of the piston velocity V, Rmin will likewise 
decrease, reaching first the value R,,, for which S = 0, and then R, 

(for the glued piston). The formulas for R,, and the corresponding velo- 
city will be 

P (R,,) - $ V3p W (H,,) I = 0 

Fig. 2. 

RD 
R? a (R) 

TdR$ \ +dR 
(3.8) 

m= 

R,, RD 

Figure 2 shows an example of the form of 
the diagram of the parameters of motion for 
the solution (3.6). ‘lhe solution constructed, 
containing a portion with plastic shear, has 
a remarkable property. It contains two 
centered rarefaction waves, separated by a 
region of progressive motion. This type of 

motion is not possible in a gas and in general in an ideal fluid having 
a sound velocity which is a continuous function of density. A similar 
motion occurs in magnetohydrodynamics where the medium is characterized 
by two sound velocities. These also make possible the separate propaga- 
tion of two centered rarefaction waves in the self-similar problem. 
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We now investigate the case of motion of the piston to the left, but 
d(a$)/dR 85 0 and d(u#)/dR < 0. We again construct the solution, start- 
ing with the smallest values of the piston velocity and then increasing 
these velocities. For small velocities the motion will be small, and 
therefore the shear will be elastic throughout the region of motion. By 
virtue of the assumed conditions, continuous waves of rarefaction and 
stable compressive shock waves will not be possible. By means of con- 
siderations completely analogous to those introduced above, it can be 
shown that the solution of the problem cannot contain continuous compres- 
sive waves. Therefore, we finally obtain a solution consisting of a pro- 
gressive flow bounded from the side of the region of the initial unper- 
turbed state by a rarefaction jump. It is given by the formula 

u=o, 
u=-I, 

Here the constants Rmin 

surface of the jump by the 

R = Roo (%od%<+-) 

R = Rmin (-fd%<%o) 
(3.9) 

and 5, are determined from conditions on the 
formulas 

R -08 s a2e (R) dR = ma hRof~‘” , 
00 mln 

Rmia 

(3.10) 

These formulas solve the problem for Rmi,, 
density for which the elastic limit in shear 

? RDP where R, is 
_. 

the 
is first attained. This 

takes place when the velocity of the piston attains the value VD deter- 
mined from the formula 

%. 

5 ae2 (R) dR = ma ll”‘LRi 

RD 
00 D 

(3.11) 

For larger values of the velocities the solution will contain regions 
of plastic shear. 

To construct the solution for such velocities, we examine the relation- 
ship between the sound velocity under plastic shear for R = R, and the 
velocity of a jump along the 
these quantities we have the 

particles in back of it for V = vD. For 
formulas 

WDrI&-~~I=&- I’D--ooI 
D 1 RD-l- Roe-‘1 

(3.12) 

If the velocity of the piston does not significantly exceed VD, and 
if a solution of a single wave is constructed as previously, the density 
in back of the wave R, will differ little from RD, a,&) from a (RD) 

W, from WD. Therefore, if ap(R,>/m < WD then up(R,)/m < W, as wefl for 
and 
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these velocities V. Ihis means that the shock wave in such a solution 
will be unstable. The only possible 
solution for these values of the 
piston velocity will be a solution 
consisting of two rarefaction shock 
waves moving one after the other. 
The solution is given by the formula 

u = 0, R = Roe (Eo<5F,+f00) 

U = UD, R = RD (EldE6E& (3.13) 

U=--l, R=R,i, l-1 <EEEl) 

Here the constants IJD, tD, Rmin, 
[I are found from corresponding con- 
ditions on the shock waves from the 
formulas 

Fig. 3. 

ED = - R:T; 
D' 

UD = -;r/ R;o;-D (R)e(R)dR)+ 
(3.14;l 

dR = m2 d’T>‘y Rdrnin, -El = 
RDUD + Rm,n 

I?min 
D mln RD - Rtnin 

In Fig. 3 the curve AD shows the connection between S and l/R for 
elastic shear and the curve DBCE for plastic shear. Point A is the 
initial state, point D the state behind the first shock wave (transition 
state), point B the state in back of the second shock wave, point K the 
state behind the shock wave when V < Vo. Under an increase in the piston 

velocity V the point describing the state in back of the shock moves 
from the point A to the point D along AKD; after point D is reached, 
the velocity of the shock wave and the state of the medium in back of it 
does not change with a further increase in V. Rather, a second wave is 
excited with a point that moves from point D along DBE. If the point C 
exists (the intersection of the straight line AD and the curve DE), 
then when it is reached the second wave catches up with the first wave, 
and for larger values of the velocity V the motion again occurs with a 
single wave. The value of the velocity at which this occurs is given by 
the relation 

51 h) = ED b&) (3.15) 

For m > mc the solution is determined by the formulas 
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u = 0, R = Roe CEO < E < + m, 
u=--l, R = &in (6l<E<io) 

RD ROO 

\ 

Rmin 

up2 (R) dR + \ ae2 (R) dR = m2 H~~R~:~in 
RD 

go I= Rmin 
(3.16) 

R00 - R min 

Here, for a certain piston velocity, the state for which S = 0 on the 
piston will be likewise attained, and there will also exist a value of 
the velocity for which the state of limiting tension will be reached in 
the neighborhood of the piston. ‘Ihese states can be reached up to the 
attainment of states D and C and after state C (Fig. 3). In each of these 
cases it is a simple matter to write down formulas which determine the 
values of the velocities for which these limiting states are attained. 
‘Ihe formulas are similar to (3.3) to (3.51, and (3.81. 

If the functions at(R) and ap(R) are such that ap(R,)/m > WD, then 
there will be no second wave regardless of the value of V. It should be 
mentioned that for the points on Fig. 3 which are located between C and 
L (L is the point at which a straight line emanating from point A is 
tangent to the curve DE) it is possible, in addition to the above solu- 
tion, to construct a second solution in which there occurs only one shock 
wave, connecting the points A and B directly. Ihis wave is clearly stable. 

However this solution must be discarded because the solution, under the 
condition that the stability conditions are fulfilled at A and B, does 
not depend on the form of the curve ADB in the interval between A and B. 
Hence, in particular, the curve in this interval can be arranged so that 
the necessary thermodynamical energy inequality [19,20 1 is not satisfied 
on the shock wave, since the deformation work entering into this inequal- 
ity depends on the form of the curve ADB. 

the quantities d(a_R)/dR and d(aJ)/dR change sign in the range When 
of R of 
For the 
faction 
waves. 

interest, the situition can be &died in an analogous fashion. 
piston problem in these cases there will be regions with rare- 
waves and a progressive flow, and likewise rarefaction shock 

We turn our attention now to a curious property of the solution that 
has been constructed - it can contain two shock waves, propagating at 
different velocities from one another. ‘Ihis situation is likewise related 
to the discontinuous character of the sound velocity as a function of 
the density and is a consequence of the transition from elastic to 
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plastic shear deformation. In ordinary ideal fluids this phenomenon can- 
not take place. Such a phenomenon is met in ma~etohydrod~~ics where 

it is likewise associated with the presence of two sound velocities. 

We turn finally to the case of the piston moving to the right and 
producing compression. ?%e considerations introduced above for the motion 

producing rarefaction carry over completely. A difference will arise in 

the following two circumstances. In rarefaction motion the sound velocity 

underwent a discontinuity only in the transition from elastic to plastic 

shear. With this, as established above, was associated the possibility 

of two shock or continuous rarefaction waves existing. In compressive 

motions, the sound velocity will undergo a discontinuity at another point 

in addition to the point of transition from elastic to plastic shear. 

'Ihis is the point in the P, R-plane at which there occurs a transition 

from compression along the curve R, = const to the curve R = R,. At this 

point dP/dR undergoes a discontinuity, as is seen from Formula (2.3), and 
this means that the sound velocity a suffers a discontinuity as well 

((1.111, (1.121). 

Further, if d(&R)/dR < 0 were true for large values of P, then as can 
be verified from an analysis of the equations expressing the solution of 

the problem, the solution can be constructed only for a range of values 

of the piston velocity V which is bounded from above. Wit the piston 
velocity is an assigned external quantity. In order for the problem, 

whose solution must exist on physical grounds, to be solvable for arbi- 

trary V, it is necessary to assume that d(~~/~ > 0 for significant 
densities. This condition will be known to be satisfied if, for example, 

the density of the medium R remains bounded for an unbounded increase in 
the pressure P. 

For an increase in the density R, both for a transition through the 

elastic limit in shear and for a transition through a break in the P, R 
diagram, the sound velocity, changing by a jump, decreases. This will 

lead to the situation that when d(aR~/dR < 0 there will be, correspond- 
ing to values of the density at which the sound velocity undergoes a dis- 

continuity, regions of progressive motion enclosed between two continuous 

compressive waves. When d(aR)/dR > 0 this will lead to the increase in 
the number of_compressive shock waves by one, for a transition through 

each value of density at which the sound velocity undergoes a discon- 

tinuity. Ihe considerations which establish these facts are almost a 
literal repetition of the analogous considerations which were introduced 

above in the case of rarefaction. Hence, even when the condition d(aR)/ 
dR > 0 is satisfied throughout the region of continuous sound velocity 
a(R), there can exist three compressive shock waves travelling one after 

the other at different velocities for sufficiently large values of the 

piston velocity. 
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Further, if it is possible for the function d(aR)/dR to change sign 

several times, then the number of shock waves can be still larger. 

If for values of R close to R,,, d(aR)/dR < 0, while for larger R, 
d(aR)/dR > 0, then for small piston velocities the motion will be a con- 

tinuous compressive wave. With a growth in the piston velocity, a jump 

will emerge in back of the continuous wave. The jump will move into the 

main part of the continuous wave with increasing piston velocity, absorb- 

ing it, so that at a certain value of the piston velocity the continuous 

compressive wave will dissipate and a single jump will remain. 

An experiment [16 I h s ows that exactly this case occurs in reality. 

merefore, in the solution of specific problems more attention should be 

paid to it. 

It should be emphasized that inasmuch as for P + = it is certainly 
true that d(aR)/dR > 0 ( as was established above), in all cases, start- 

ing with some value of the piston velocity, the piston motion for all 

large values of the piston velocity will represent a progressive flow, 

bounded uniquely from the direction of the unperturbed medium in the 

solution of the shock wave problem. 

We remark finally that the transition from plastic shear to elastic 

shear again cannot be accompanied by any sort of qualitative change in 

the solution of the problem, since from the relations (1.251, (1.26) it 

follows that this transition occurs with the sound velocity remaining 

continuous. 

BIBLIOGRAPHY 

1. Donnell, L.H., Longitudinal wave transmission and impact. Trans. 

AME 52, 1930. 

2. Taylor, G.I., The plastic wave in a wire extended by an impact load. 

British Official Rep. R.C. 329, 1942. 

3. Karman, Th. and Duwez, P., On the propagation of plastic deforma- 

tion in solids. J. Appl. Phys. 21, 1950. 

4. Rakhmatul in, Kh. A. , 0 rasprostranenii volny razgruzki (On the pro- 

pagation of an unloading wave). PMM Vol. 9, No. 1, 1945. 

5. Rakhmatulin, Kh. A., 0 rasprostranenii volny razgruzki vdol’ sterzh- 

nia peremennogo predela uprugosti (On the propagation of an un- 

loading wave along a rod with a variable elastic limit). PMM Vol. 

10,. No. 3, 1946. 



1322 S.S. Grigorion and F.L. Chernous’ko 

6. Rakhmatulin, Kh. A., 0 rasprostranenii ploskikh voln v uprugoi srede 
pri nelineinoi zavisimosti napriazheniia ot deformatsii (On the 
propagation of plane waves in an elastic medium with a nonlinear 
stress-strain dependence). Uch. zap. MGU No. 152, 1951. 

7. Shapiro, G. S., Prodol’nye kolebaniia sterzhnei (Longitudinal oscilla- 
tions of rods). PMM Vol. 10, Nos. 5-6, 1946. 

8. Barenblatt. G. I., 0 rasprostranenii mgnovennykh vozmushchenii v srede 
s nelineinoi zavisimost’iu napriazhenii ot deformatsii (On the pro- 
pagation of instantaneous disturbances in a medium with a nonlinear 
stress-strain dependence). PMM Vol. 17, No. 4, 1953. 

9. White, Y.P. and Griffis, L., The permanent strain in a uniform bar 
due to longitudinal impact. J. Appl. Mech. Vol. 14, NO. 4, 1947. 

10. White, M.P. and Griffis, L., The propagation of plasticity in uni- 
axial compression. J. Appl. Mech. Vol. 15, No. 3, 1948. 

11. Galin, G.Ia., 0 rasprostranenii vozmushchenii v sredakh s nelineinoi 
zavisimost’iu napriazhenii ot deformatsii i temperatury (On the 
propagation of disturbances in media with a nonlinear dependence 

of stress on strain and temperature). Dokl. Akad. Nauk SSSR Vol. 
120, No. 4, 1958. 

12. Liakhov, G.M. and Poliakova, N.I., Priblizhennyi metod rascheta udar- 
nykh voln i ikh vzaimodeistvii (An approximate method of computing 
shock waves and their interaction). Izv. Akad. Nauk SSSR, OTN NO. 2, 

1959. 

13. Liakhov, G.M. and Poliakova, N. I., Rasprostranenie i vzaimodeistvie 
voln szhatiia i razrezheniia v uprugo-plasticheskikh sredakh (Pro- 
pagation and interaction of waves of compression and expansion in 
elasto-plastic media). Izv. Akad. Nank, OTN NO. 3. 1960. 

14. Grigorian, S. S., Ob obshchikh uravneniiakh dinamiki gruntov (On the 
general equations of soil dynamics). Dokl. Akad. Nook SSSR Vol. 

124, No. 2, 1959. 

15. Grigorian, S. S., Ob osnovnykh predstavlenliakh dinamiki gruntov (On 
basic concepts in soil dynamics). PMM Vol. 24, NO. 6, 1960. 

16. Alekseenko. V.D., Grigorian, S.S., Novgorodov, A.F. and Rykov. G.B., 
Nekotorye eksperlmental’nye issledovanlia po dinamike q iagikh 
gruntov (Some experimental investigations in the dynamics of soft 
soils). DokZ. Akad. Nouk SSSR Vol. 133. NO. 6. 1960. 

17. Grigorian. S.S. and Chernous’ko, F.L., Odnomernye kvazistaticheskie 
dvizheniia grunta (One-dimensional quasi-statical motions of soil). 
PMM Vol. 25, No. 1, 1961. 



Piston problem for soil-dynamics equations 1323 

18. Landau, L.D. and Lifshitz, E.M., Mekhanika sploshnykh sred (Mechanics 

of Continuous Media). Gostekhizdat, 1953. 

19. Grigorian, S. S., 0 postanovke dinamicheskikh zadach dlia ideal’nykh 
plasticheskikh sred (On the formulation of dynamic problems for 
ideally plastic media). PMM Vol. 19, No. 6, 1955. 

20. Galin, G. Ia. , Ob usloviiakh na poverkhnostiakh sil’nykh razryvov 
dlia uprugikh i plasticheskikh tel (On the conditions of surfaces 
of strong shocks for elastic and plastic bodies). PMM Vol. 19, No.3. 
1955. 

Translated by E.E.Z. 


